跳至內容
選單
此問題已被標幟
問題已關閉 原因: Question / Code not indented
Manikandan2025年10月25日 05時58分13秒
103 瀏覽次數

Been working on an image classification model lately - the training accuracy looks great, but the validation accuracy seems to plateau around 88–90%.

I’ve already tried data augmentation and dropout tuning, but the improvement is marginal.

Curious to know - what’s your go-to approach when your model just refuses to generalise better? Do you usually tweak the architecture, try transfer learning, or focus on data cleaning?

頭像
捨棄
相關帖文 回覆 瀏覽次數 活動
0
10月 25
2
0
10月 25
10
0
10月 25
9
3
7月 25
1187
0
10月 25
37