Přejít na obsah
Menu
You need to be registered to interact with the community.
This question has been flagged
Otázka byla uzavřena pro důvod: Question / Code not indented od Manikandan na 25.10.2025 05:58:13
149 Zobrazení

Been working on an image classification model lately - the training accuracy looks great, but the validation accuracy seems to plateau around 88–90%.

I’ve already tried data augmentation and dropout tuning, but the improvement is marginal.

Curious to know - what’s your go-to approach when your model just refuses to generalise better? Do you usually tweak the architecture, try transfer learning, or focus on data cleaning?

Avatar
Zrušit
Related Posts Odpovědi Zobrazení Aktivita
0
říj 25
2
0
říj 25
10
0
říj 25
9
3
čvc 25
1199
0
říj 25
37