İçereği Atla
Menü
Bu soru işaretlendi
Soru kapatıldı sebep: Question / Code not indented yazan Manikandan tarihi 25-10-2025 05:58:13
148 Görünümler

Been working on an image classification model lately - the training accuracy looks great, but the validation accuracy seems to plateau around 88–90%.

I’ve already tried data augmentation and dropout tuning, but the improvement is marginal.

Curious to know - what’s your go-to approach when your model just refuses to generalise better? Do you usually tweak the architecture, try transfer learning, or focus on data cleaning?

Avatar
Vazgeç
İlgili Gönderiler Cevaplar Görünümler Aktivite
0
Eki 25
2
0
Eki 25
10
0
Eki 25
9
3
Tem 25
1199
0
Eki 25
37