Skip ke Konten
Menu
Pertanyaan ini telah diberikan tanda
Pertanyaan sudah ditutup untuk alasan: Question / Code not indented
oleh Manikandan pada 25/10/2025 05:58:13
106 Tampilan

Been working on an image classification model lately - the training accuracy looks great, but the validation accuracy seems to plateau around 88–90%.

I’ve already tried data augmentation and dropout tuning, but the improvement is marginal.

Curious to know - what’s your go-to approach when your model just refuses to generalise better? Do you usually tweak the architecture, try transfer learning, or focus on data cleaning?

Avatar
Buang
Post Terkait Replies Tampilan Aktivitas
0
Okt 25
2
0
Okt 25
10
0
Okt 25
9
3
Jul 25
1189
0
Okt 25
37