Ir al contenido
Menú
Se marcó esta pregunta
La pregunta está bloqueada por motivo: Question / Code not indented
por Manikandan en 25/10/2025 05:58:13
107 Vistas

Been working on an image classification model lately - the training accuracy looks great, but the validation accuracy seems to plateau around 88–90%.

I’ve already tried data augmentation and dropout tuning, but the improvement is marginal.

Curious to know - what’s your go-to approach when your model just refuses to generalise better? Do you usually tweak the architecture, try transfer learning, or focus on data cleaning?

Avatar
Descartar
Publicaciones relacionadas Respuestas Vistas Actividad
0
oct 25
2
0
oct 25
10
0
oct 25
9
3
jul 25
1189
0
oct 25
37