
Open Source RAD with OpenERP 7.0
PREAMBLE OpenERP is a modern Suite of Business Applications, released
under the AGPL license, and featuring CRM, HR, Sales, Accounting,
Manufacturing, Warehouse Management, Project Management, and more.
It is based on a modular, scalable, and intuitive Rapid Application
Development (RAD) framework written in Python.

OpenERP features a complete and modular toolbox for quickly building
applications: integrated Object-Relationship Mapping (ORM) support,
template-based Model-View-Controller (MVC) interfaces, a report
generation system, automated internationalization, and much more.

Python is a high-level dynamic programming language, ideal for RAD,
combining power with clear syntax, and a core kept small by design.

Tip: Useful links

• Main website, with OpenERP downloads: www.openerp.com
• Functional & technical documentation: doc.openerp.com
• Community resources: www.openerp.com/community
• Continous Integration server: runbot.openerp.com
• Learning Python: doc.python.org

Installing OpenERP
OpenERP is distributed as packages/installers for most platforms, but can
also be installed from the source on any platform.

OpenERP Architecture

OpenERP uses the well-known client-server paradigm: the client is
running as a Javascript application in your browser, connecting to the
server using the JSON-RPC protocol over HTTP(S). Ad-hoc clients can also
be easily written and connect to the server using XML-RPC or JSON-RPC.

Tip: Installation procedure
The procedure for installing OpenERP is likely to evolve (dependencies and so on), so make sure to always
check the specific documentation (packaged & on website) for the latest procedures. See
http://doc.openerp.com/v7.0/install

Package installation
Windows all-in-one installer

Linux all-in-one packages available for Debian-based (.deb) and RedHat-
based (.rpm) distributions

Mac no all-in-one installer, needs to be installed from source

Installing from source
There are two alternatives: using a tarball provided on the website, or
directly getting the source using Bazaar (distributed Source Version
Control). You also need to install the required dependencies (PostgreSQL
and a few Python libraries – see documentation on doc.openerp.com).

Compilation tip: OpenERP being Python-based, no compilation step is needed
Typical bazaar checkout procedure (on Debian-based Linux)
$ sudo apt-get install bzr # Install Bazaar (version control software)
$ bzr cat -d lp:~openerp-dev/openerp-tools/trunk setup.sh | sh # Get Installer
$ make init-v70 # Install OpenERP 7.0
$ make server # Start OpenERP Server with embedded Web

Database creation
After starting the server, open http://localhost:8069 in your favorite
browser. You will see the Database Manager screen where you can create
a new database. Each database has its own modules and config, and can
be created in demo mode to test a pre-populated database (do not use
demo mode for a real database!)

Building an OpenERP module: idea
CONTEXT The code samples used in this memento are taken from a
hypothetical idea module. The purpose of this module would be to help
creative minds, who often come up with ideas that cannot be pursued
immediately, and are too easily forgotten if not logged somewhere. It
could be used to record these ideas, sort them and rate them.

Note: Modular development
OpenERP uses modules as feature containers, to foster maintainable and robust development. Modules
provide feature isolation, an appropriate level of abstraction, and obvious MVC patterns.

Composition of a module
A module may contain any of the following elements:

• business objects: declared as Python classes extending the
osv.Model class, the persistence of these resources is completely
managed by OpenERP ;
• data: XML/CSV files with meta-data (views and workflows
declaration), configuration data (modules parametrization) and demo
data (optional but recommended for testing, e.g. sample ideas) ;
• wizards: stateful interactive forms used to assist users, often
available as contextual actions on resources ;
• reports: RML (XML format), MAKO or OpenOffice report templates, to
be merged with any kind of business data, and generate HTML, ODT or
PDF reports.

Typical module structure
Each module is contained in its own directory within the server/bin/addons
directory in the server installation.

Note: You can declare your own addons directory in the configuration file of OpenERP (passed to the server
with the -c option) using the addons_path option.

addons/
 |- idea/ # The module directory
 |- demo/ # Demo and unit test population data
 |- i18n/ # Translation files
 |- report/ # Report definitions
 |- security/ # Declaration of groups and access rights
 |- view/ # Views (forms,lists), menus and actions
 |- wizard/ # Wizards definitions
 |- workflow/ # Workflow definitions
 |- __init__.py # Python package initialization (required)
 |- __openerp__.py # module declaration (required)
 |- idea.py # Python classes, the module's objects

The __init__.py file is the Python module descriptor, because an OpenERP
module is also a regular Python module.
__init__.py:
Import all files & directories containing python code
import idea, wizard, report

The __openerp__.py is the OpenERP module manifest and contains a single
Python dictionary with the declaration of the module: its name,
dependencies, description, and composition.
__openerp__.py:
{
 'name' : 'Idea',
 'version' : '1.0',
 'author' : 'OpenERP',
 'description' : 'Ideas management module',
 'category': 'Enterprise Innovation',
 'website': 'http://www.openerp.com',
 'depends' : ['base'], # list of dependencies, conditioning startup order
 'data' : [# data files to load at module install
 'security/groups.xml', # always load groups first!
 'security/ir.model.access.csv', # load access rights after groups
 'workflow/workflow.xml',
 'view/views.xml',

Copyright © 2013 Open Object Press - All rights reserved – See license on page 10. p.1/10

1
2
3
4

5
6
7
8
9

10
11
12
13
14
15
16

17
18

19
20
21
22
23
24
25
26
27
28
29
30
31

file:///home/odo/Documents/Memento/http:%2F%2Ftest,openobject.com
file:///home/odo/Documents/Memento/http:%2F%2Ftest,openobject.com
http://www.openerp.com/
http://www.openerp.com/
http://localhost:8069/
http://doc.openerp.com/
http://doc.openerp.com/v7.0/install
http://doc.python.org/
http://runbot.openerp.com/
http://www.openerp.com/community
http://doc.openerp.com/

 'wizard/wizard.xml',
 'report/report.xml',
],
 'demo': ['demo/demo.xml'], # demo data (for unit tests)
}

Object-Relational Mapping Service – ORM
Key component of OpenERP, the ORM is a complete Object-Relational
mapping layer, freeing developers from having to write basic SQL
plumbing. Business objects are declared as Python classes inheriting from
the osv.Model class, which makes them magically persisted by the ORM
layer.

Predefined attributes are used in the Python class to specify a business
object's characteristics for the ORM:

idea.py:
from osv import osv, fields
class ideaidea(osv.Model):
 _name = 'idea.idea'
 _columns = {
 'name': fields.char('Title', size=64, required=True, translate=True),
 'state': fields.selection([('draft','Draft'),
 ('confirmed','Confirmed')],'State',required=True,readonly=True),
 # Description is read-only when not draft!
 'description': fields.text('Description', readonly=True,
 states={'draft': [('readonly', False)]}),
 'active': fields.boolean('Active'),
 'invent_date': fields.date('Invent date'),
 # by convention, many2one fields end with '_id'
 'inventor_id': fields.many2one('res.partner','Inventor'),
 'inventor_country_id': fields.related('inventor_id','country',
 readonly=True, type='many2one',
 relation='res.country', string='Country'),
 # by convention, *2many fields end with '_ids'
 'vote_ids': fields.one2many('idea.vote','idea_id','Votes'),
 'sponsor_ids': fields.many2many('res.partner','idea_sponsor_rel',
 'idea_id','sponsor_id','Sponsors'),
 'score': fields.float('Score',digits=(2,1)),
 'category_id' = many2one('idea.category', 'Category'),
 }
 _defaults = {
 'active': True, # ideas are active by default
 'state': 'draft', # ideas are in draft state by default
 }
 def _check_name(self,cr,uid,ids):
 for idea in self.browse(cr, uid, ids):
 if 'spam' in idea.name: return False # Can't create ideas with spam!
 return True
 _sql_constraints = [('name_uniq','unique(name)', 'Ideas must be unique!')]
 _constraints = [(_check_name, 'Please avoid spam in ideas !', ['name'])]

Predefined osv.osv attributes for business objects

_name (required) business object name, in dot-notation (in module namespace)

_columns (required) dictionary {field name→field declaration }

_defaults dictionary: {field name→literal or function providing default}
 _defaults['name'] = lambda self,cr,uid,context: 'eggs'

_auto if True (default) the ORM will create the database table – set
to False to create your own table/view within the init() method

_inherit _name of the parent business object (for inheritance)

_inherits for decoration inheritance: dictionary mapping the _name of
the parent business object(s) to the names of the corresponding
foreign key fields to use

_constraints list of tuples defining the Python constraints, in the form
(func_name, message, fields) (→70)

_sql_constraints list of tuples defining the SQL constraints, in the form
(name, sql_def, message) (→69)

_log_access If True (default), 4 fields (create_uid, create_date, write_uid,
write_date) will be used to log record-level operations, made
accessible via the perm_read() function

_order Name of the field used to sort the records in lists (default: 'id')

_rec_name Alternative field to use as name, used by name_get() (default:
'name')

Predefined osv.osv attributes for business objects
_sql SQL code to create the table/view for this object (if _auto is

False) – can be replaced by SQL execution in the init() method

_table SQL table name to use (default: _name with dots '.' replaced
by underscores '_')

Inheritance mechanisms

ORM field types
Objects may contain 3 types of fields: simple, relational, and functional.
Simple types are integers, floats, booleans, strings, etc. Relational fields
represent the relationships between objects (one2many, many2one,
many2many). Functional fields are not stored in the database but
calculated on-the-fly as Python functions. Relevant examples in the idea

class above are indicated with the corresponding line numbers (→XX,XX)

ORM fields types
Common attributes supported by all fields (optional unless specified)

• string: field label (required)
• required: True if mandatory
• readonly: True if not editable
• help: help tooltip
• select: True to create a
database index on this column

• context: dictionary with contextual
parameters (for relational fields)
• change_default: True if field should be usable
as condition for default values in clients
• states: dynamic changes to this field's
common attributes based on the state field
(→42,46)

Simple fields

Copyright © 2013 Open Object Press - All rights reserved – See license on page 10. p.2/10

32
33
34
35
36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

ORM fields types
boolean(...) integer(...) date(...)
datetime(...) time(...)

 'active': fields.boolean('Active'),
 'priority': fields.integer('Priority'),
 'start_date': fields.date('Start Date'),

char(string,size,translate=False,..)
text(string, translate=False, …)
Text-based fields

• translate: True if field values can be
translated by users, for char/text fields
• size: optional max size for char fields
(→41,45)

float(string, digits=None, ...)
Decimal value

• digits: tuple (precision, scale) (→58)

selection(values, string, ...)
Field allowing selection among
a set of predefined values

• values: list of values (key-label tuples) or
function returning such a list (required) (→42)

binary(string, filters=None, ...)
 Field for storing a file or binary
content.

• filters: optional filename filters for selection
'picture': fields.binary('Picture',
 filters='*.png,*.gif')

reference(string, selection, size,..)
 Field with dynamic relationship
to any other object, associated
with an assistant widget

• selection: model _name of allowed objects
types and corresponding label (same format as
values for selection fields) (required)
• size: size of text column used to store it
(storage format is 'model_name,object_id')

'contact': fields.reference('Contact',[
 ('res.partner','Partner'),
 ('res.partner.contact','Contact')])

Relational fields

Common attributes supported by
relational fields

• domain: optional filter in the form of
arguments for search (see search())

many2one(obj, ondelete='set null', …)
(→50)
Relationship towards a parent
object (using a foreign key)

• obj: _name of destination object (required)
• ondelete: deletion handling, e.g. 'set null',
'cascade', see PostgreSQL documentation

one2many(obj, field_id, …) (→55)
Virtual relationship towards
multiple objects (inverse of
many2one)

• obj: _name of destination object (required)
• field_id: field name of inverse many2one, i.e.
corresponding foreign key (required)

many2many(obj, rel, field1, field2, …)
(→56)
Bidirectional multiple
relationship between objects

• obj: _name of destination object (required)
• rel: optional name of relationship table to use
(default: auto-assigned based on model names)
• field1: name of field in rel table storing the id
of the current object (default: based on model)
• field2: name of field in rel table storing the id
of the target object (default: based on model)

Functional fields

function(fnct, arg=None, fnct_inv=None, fnct_inv_arg=None, type='float',
fnct_search=None, obj=None, store=False, multi=False,…)
Functional field simulating a real field, computed rather than stored

• fnct: function to compute the field value (required)
 def fnct(self, cr, uid, ids, field_name, arg, context)
 returns a dictionary { ids→values } with values of type type

• fnct_inv: function used to write a value in the field instead
 def fnct_inv(obj, cr, uid, id, name, value, fnct_inv_arg, context)

• type: type of simulated field (can be any other type except 'function')
• fnct_search: function used to search on this field
 def fnct_search(obj, cr, uid, obj, name, args)
 returns a list of tuples arguments for search(), e.g. [('id','in',[1,3,5])]

• obj: model _name of simulated field if it is a relational field
• store, multi: optimization mechanisms (see usage in Performance Section)

related(f1, f2, …, type='float', …) Shortcut field equivalent to browsing chained fields
• f1,f2,...: chained fields to reach target (f1 required) (→51)

• type: type of target field

ORM fields types
property(obj, type='float', view_load=None, group_name=None, …)
Dynamic attribute with specific access rights
• obj: object (required)
• type: type of equivalent field

Tip: relational fields symmetry

• one2many ↔ many2one are symmetric

• many2many ↔ many2many are symmetric when inversed (swap field1 and field2 if explicit)

• one2many ↔ many2one + many2one ↔ one2many = many2many

Special / Reserved field names
A few field names are reserved for pre-defined behavior in OpenERP. Some of
them are created automatically by the system, and in that case any field wih
that name will be ignored.

id unique system identifier for the object

name field whose value is used to display the record in lists, etc.
if missing, set _rec_name to specify another field to use

active toggle visibility: records with active set to False are hidden by default

sequence defines order and allows drag&drop reordering if visible in list views

state lifecycle stages for the object, used by the states attribute

parent_id defines tree structure on records, and enables child_of operator

parent_left,
parent_right

used in conjunction with _parent_store flag on object, allows faster
access to tree structures (see also Performance Optimization section)

create_date,
create_uid,
write_date,
write_uid

used to log creator, last updater, date of creation and last update date
of the record. disabled if _log_access flag is set to False
(created by ORM, do not add them)

Working with the ORM
Inheriting from the osv.Model class makes all the ORM methods available
on business objects. These methods may be invoked on the self object
within the Python class itself (see examples in the table below), or from
outside the class by first obtaining an instance via the ORM pool system.

ORM usage sample
class idea2idea2(osv.Model):
 _inherit = 'idea.idea'
 def _score_calc(self,cr,uid,ids,field,arg,context=None):
 res = {}
 # This loop generates only 2 queries thanks to browse()!
 for idea in self.browse(cr,uid,ids,context=context):
 sum_vote = sum([v.vote for v in idea.vote_ids])
 avg_vote = sum_vote/len(idea.vote_ids)
 res[idea.id] = avg_vote
 return res
 _columns = {
 # Replace static score with average of votes
 'score':fields.function(_score_calc,type='float')
 }

ORM Methods on osv.Model objects
OSV generic accessor • self.pool.get('object_name') may be used to

obtain a model from any other

Common parameters, used by
multiple methods

• cr: database connection (cursor)
• uid: id of user performing the operation
• ids: record ids to perform the operation on
• context: optional dictionary of contextual
parameters, e.g. { 'lang': 'en_US', ... }

Copyright © 2013 Open Object Press - All rights reserved – See license on page 10. p.3/10

72
73
74
75
76
77
78
79
80
81
82
83
84
85

http://www.postgresql.org/docs/8.3/static/ddl-constraints.html

ORM Methods on osv.Model objects
search(cr, uid, domain, offset=0,

limit=None, order=None,
context=None, count=False)

Returns: list of ids of records
matching the given criteria

• domain: filter specifying search criteria
• offset: optional number of records to skip
• limit: optional max number of records to
return
• order: optional columns to sort by (default:
self._order)
• count: if True, returns only the number of
records matching the criteria, not their ids

#Operators: =, !=, >, >=, <, <=, like, ilike,
#in, not in, child_of, parent_left, parent_right
#Prefix operators: '&' (default), '|', '!'
#Fetch non-spam partner shops + partner 34
ids = self.search(cr, uid,
 ['|', ('partner_id', '!=', 34),
 '!', ('name', 'ilike', 'spam'),],
 order='partner_id')

create(cr, uid, values, context=None)

Creates a new record with the
specified value
Returns: id of the new record

• values: dictionary of field values
idea_id = self.create(cr, uid,
 { 'name': 'Spam recipe',
 'description' : 'spam & eggs',
 'inventor_id': 45,
 })

read(cr, uid, ids, fields=None,
context=None)

Returns: list of dictionaries with
requested field values

• fields: optional list of field names to return
(default: all fields)

results = self.read(cr, uid, [42,43],
 ['name', 'inventor_id'])
print 'Inventor:', results[0]['inventor_id']

read_group(cr, uid, domain, fields,
group_by, offset=0, limit=None,
order_by=None, context=None)

Returns: list of dictionaries with
requested field values, grouped
by given group_by field(s).

• domain: search filter (see search())
• fields: list of field names to read
• group_by: field or list of fields to group by
• offset, limit: see search()

• order_by: optional ordering for the results
> print self.read_group(cr,uid,[],
 ['score'], ['inventor_id'])
[{'inventor_id': (1, 'Administrator'),
 'score': 23, # aggregated score
 'inventor_id_count': 12, # group count
 },
 {'inventor_id': (3, 'Demo'),
 'score': 13,
 'inventor_id_count': 7,
 }]

write(cr, uid, ids, values, context=None)

Updates records with given ids
with the given values.
Returns: True

• values: dictionary of field values to update
self.write(cr, uid, [42,43],
 { 'name': 'spam & eggs',
 'partner_id': 24,
 })

copy(cr, uid, id, defaults,context=None)

Duplicates record with given id
updating it with defaults values.
Returns: True

• defaults: dictionary of field values to modify
in the copied values when creating the
duplicated object

unlink(cr, uid, ids, context=None)

Deletes records with the given ids
Returns: True

self.unlink(cr, uid, [42,43])

browse(cr, uid, ids, context=None)

Fetches records as objects,
allowing to use dot-notation to
browse fields and relations
Returns: object or list of objects
requested

idea = self.browse(cr, uid, 42)
print 'Idea description:', idea.description
print 'Inventor country code:',
 idea.inventor_id.address[0].country_id.code
for vote in idea.vote_ids:
 print 'Vote %2.2f' % vote.vote

ORM Methods on osv.Model objects
default_get(cr, uid, fields,

context=None)

Returns: a dictionary of the
default values for fields (set on
the object class, by the user
preferences, or via the context)

• fields: list of field names

defs = self.default_get(cr,uid,
 ['name','active'])
active should be True by default
assert defs['active']

perm_read(cr, uid, ids, details=True)

Returns: a list of ownership
dictionaries for each requested
record

• details: if True, *_uid fields values are
replaced with pairs (id, name_of_user)

• returned dictionaries contain: object id (id),
creator user id (create_uid), creation date
(create_date), updater user id (write_uid),
update date (write_date)

perms = self.perm_read(cr,uid,[42,43])
print 'creator:', perms[0].get('create_uid', 'n/a')

fields_get(cr, uid, fields=None,
context=None)

Returns a dictionary of field
dictionaries, each one describing
a field of the business object

• fields: list of field names
class ideaidea(osv.osv):
 (...)
 _columns = {
 'name' : fields.char('Name',size=64)
 (...)
 def test_fields_get(self,cr,uid):
 assert(self.fields_get('name')['size'] == 64)

fields_view_get(cr, uid,
view_id=None, view_type='form',
context=None, toolbar=False)

Returns a dictionary describing
the composition of the requested
view (including inherited views)

• view_id: id of the view or None

• view_type: type of view to return if view_id
is None ('form','tree', ...)
• toolbar: True to include contextual actions

def test_fields_view_get(self,cr,uid):
 idea_obj = self.pool.get('idea.idea')
 form_view = idea_obj.fields_view_get(cr,uid)

name_get(cr, uid, ids,
context=None)
Returns tuples with the text
representation of requested
objects for to-many relationships

Ideas should be shown with invention date
def name_get(self,cr,uid,ids):
 res = []
 for r in self.read(cr,uid,ids['name','create_date'])
 res.append((r['id'], '%s (%s)' (r['name'],year))
 return res

name_search(cr, uid, name='',
domain=None, operator='ilike',
context=None, limit=80)

Returns list of object names
matching the criteria, used to
provide completion for to-many
relationships. Equivalent of
search() on name + name_get()

• name: object name to search for
• operator: operator for name criterion
• domain, limit: same as for search())

Countries can be searched by code or name
def name_search(self,cr,uid,name='',
 domain=[],operator='ilike',
 context=None,limit=80):
 ids = []
 if name and len(name) == 2:
 ids = self.search(cr, user,
 [('code', '=', name)] + args,
 limit=limit, context=context)
 if not ids:
 ids = self.search(cr, user,
 [('name', operator, name)] + args,
 limit=limit, context=context)
 return self.name_get(cr,uid,ids)

export_data(cr, uid, ids, fields,
context=None)

Exports fields for selected objects,
returning a dictionary with a
datas matrix. Used when
exporting data via client menu.

• fields: list of field names
• context may contain import_comp (default:
False) to make exported data compatible with
import_data() (may prevent exporting some
fields)

import_data(cr, uid, fields, data,
mode='init', current_module='',
noupdate=False, context=None,
filename=None)

Imports given data in the given
module Used when exporting
data via client menu

• fields: list of field names
• data: data to import (see export_data())
• mode: 'init' or 'update' for record creation
• current_module: module name
• noupdate: flag for record creation
• filename: optional file to store partial import
state for recovery

Tip: use read() through webservice calls, but prefer browse() internally

Copyright © 2013 Open Object Press - All rights reserved – See license on page 10. p.4/10

Building the module interface
To construct a module, the main mechanism is to insert data records
declaring the module interface components. Each module element is a
regular data record: menus, views, actions, roles, access rights, etc.

Common XML structure
XML files declared in a module's data section contain record declarations in
the following form:

<?xml version="1.0" encoding="utf-8"?>
<openerp>
 <data>
 <record model="object_model_name" id="object_xml_id">
 <field name="field1">value1</field>
 <field name="field2">value2</field>
 </record>

 <record model="object_model_name2" id="object_xml_id2">
 <field name="field1" ref="module.object_xml_id"/>
 <field name="field2" eval="ref('module.object_xml_id')"/>
 </record>
 </data>
</openerp>

Each type of record (view, menu, action) supports a specific set of child
entities and attributes, but all share the following special attributes:
id the unique (per module) external identifier of this record (xml_id)

ref may be used instead of normal element content to reference another
record (works cross-module by prepending the module name)

eval used instead of element content to provide value as a Python expression,
that can use the ref() method to find the database id for a given xml_id

Tip: XML RelaxNG validation
OpenERP validates the syntax and structure of XML files, according to a RelaxNG grammar, found in
server/bin/import_xml.rng.
For manual check use xmllint: xmllint –relaxng /path/to/import_xml.rng <file>

Common CSV syntax
CSV files can also be added in the data section and the records will be
inserted by the OSV's import_data() method, using the CSV filename to
determine the target object model. The ORM automatically reconnects
relationships based on the following special column names:
id (xml_id) column containing identifiers for relationships

many2one_field reconnect many2one using name_search()

many2one_field:id reconnect many2one based on object's xml_id

many2one_field.id reconnect many2one based on object's database id

many2many_field reconnect via name_search(), multiple values w/ commas

many2many_field:id reconnect w/ object's xml_id, multiple values w/ commas

many2many_field.id reconnect w/ object's database id, multiple values w/ commas

one2many_field/field creates one2many destination record and sets field value
ir.model.access.csv
"id","name","model_id:id","group_id:id","perm_read","perm_write","perm_create","perm_unlink"
"access_idea_idea","idea.idea","model_idea_idea","base.group_user",1,0,0,0
"access_idea_vote","idea.vote","model_idea_vote","base.group_user",1,0,0,0

Menus and actions
Actions are declared as regular records and can be triggered in 3 ways:

• by clicking on menu items linked to a specific action
• by clicking on buttons in views, if these are connected to actions
• as contextual actions on an object (visible in the side bar)

Action declaration
<record model="ir.actions.act_window" id="action_id">
 <field name="name">action.name</field>
 <field name="view_id" ref="view_id"/>
 <field name="domain">[list of 3-tuples (max 250 characters)]</field>
 <field name="context">{context dictionary (max 250 characters)}</field>
 <field name="res_model">object.model.name</field>
 <field name="view_type">form|tree</field>
 <field name="view_mode">form,tree,calendar,graph</field>
 <field name="target">new</field>
 <field name="search_view_id" ref="search_view_id"/>
</record>

id identifier of the action in table ir.actions.act_window, must be unique
name action name (required)
view_id specific view to open (if missing, highest priority view of given type is used)
domain tuple (see search() arguments) for filtering the content of the view
context context dictionary to pass to the view
res_model object model on which the view to open is defined
view_type set to form to open records in edit mode, set to tree for a hierarchy view only
view_mode if view_type is form, list allowed modes for viewing records (form, tree, ...)
target set to new to open the view in a new window/popup
search_view_id identifier of the search view to replace default search form (new in version 5.2)

Menu declaration
The menuitem element is a shortcut for declaring an ir.ui.menu record and
connect it with a corresponding action via an ir.model.data record.
<menuitem id="menu_id" parent="parent_menu_id" name="label"
 action="action_id" groups="groupname1,groupname2" sequence="10"/>

id identifier of the menuitem, must be unique
parent external ID (xml_id) of the parent menu in the hierarchy
name optional menu label (default: action name)
action identifier of action to execute, if any
groups list of groups that can see this menu item (if missing, all groups can see it)
sequence integer index for ordering sibling menuitems (10,20,30..)

Views and inheritance
Views form a hierarchy. Several views of the same type can be declared
on the same object, and will be used depending on their priorities. By
declaring an inherited view it is possible to add/remove features in a view.

Generic view declaration
<record model="ir.ui.view" id="view_id">
 <field name="name">view.name</field>
 <field name="model">object_name</field>
 <!-- types: tree,form,calendar,search,graph,gantt,kanban -->
 <field name="type">form</field>
 <field name="priority" eval="16"/>
 <field name="arch" type="xml">
 <!-- view content: <form>, <tree>, <graph>, … -->
 </field>
</record>

id unique view identifier
name view name
model object model on which the view is defined (same as res_model in actions)
type view type: form, tree, graph, calendar, search, gantt, kanban
priority view priority, smaller is higher (default: 16)
arch architecture of the view, see various view types below

Forms (to view/edit records)
Forms allow creation/edition or resources, and correspond to <form> elements.

Allowed elements all (see form elements below)
<form string="Idea form">
 <group col="6" colspan="4">
 <group colspan="5" col="6">
 <field name="name" select="1" colspan="6"/>
 <field name="inventor_id" select="1"/>
 <field name="inventor_country_id" />
 <field name="score" select="2"/>
 </group>
 <group colspan="1" col="2">
 <field name="active"/><field name="invent_date"/>
 </group>
 </group>
 <notebook colspan="4">
 <page string="General">
 <separator string="Description"/>
 <field colspan="4" name="description" nolabel="1"/>
 </page>
 <page string="Votes">
 <field colspan="4" name="vote_ids" nolabel="1" select="1">
 <tree>
 <field name="partner_id"/>
 <field name="vote"/>
 </tree>
 </field>
 </page>
 <page string="Sponsors">
 <field colspan="4" name="sponsor_ids" nolabel="1" select="1"/>
 </page>
 </notebook>

Copyright © 2013 Open Object Press - All rights reserved – See license on page 10. p.5/10

87
88
89
90
91
92
93
94
95
96
97
98
99

100

101
102
103

104
105
106
107
108
109
110
111
112
113
114

115
116

117
118
119
120
121
122
123
124
125
126

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

 <field name="state"/>
 <button name="do_confirm" string="Confirm" type="object"/>
</form>

New: the v7.0 form API
As of OpenERP 7.0 a new form view API has been introduced. It can be turned on by adding
version=”7.0” to the <form> element. This new form API allows mixing arbitrary XHTML code with
regular OpenERP form elements. It also introduces a few specific elements to produce better-looking forms,
such as <sheet>, <header>, <footer>, and a set of general purpose CSS classes to customize the
appearance and behavior of form elements. Best practices and examples for the new form API are available in
the technical documentation:
http://doc.openerp.com/trunk/developers/server/form-view-guidelines

Form Elements

Common attributes for all elements:
• string: label of the element
• nolabel: 1 to hide the field label
• colspan: number of column on which the field must span
• rowspan: number of rows on which the field must span
• col: number of column this element must allocate to its child elements
• invisible: 1 to hide this element completely
• eval: evaluate this Python code as element content (content is string by default)
• attrs: Python map defining dynamic conditions on these attributes: readonly,
invisible, required based on search tuples on other field values

field automatic widgets depending on the corresponding field type. Attributes:
• string: label of the field for this particular view
• nolabel: 1 to hide the field label
• required: override required field attribute from Model for this view
• readonly: override readonly field attribute from Model for this view
• password: True to hide characters typed in this field
• context: Python code declaring a context dictionary
• domain: Python code declaring list of tuples for restricting values
• on_change: Python method to call when field value is changed
• groups: comma-separated list of group (id) allowed to see this field
• widget: select alternative field widget (url, email, image, float_time,
reference, html, progressbar, statusbar, handle, etc.)

properties dynamic widget showing all available properties (no attribute)
button clickable widget associated with actions. Specific attributes:

• type: type of button: workflow (default), object, or action
• name: workflow signal, function name (without parentheses) or
action to call (depending on type)
• confirm: text of confirmation message when clicked
• states: comma-separated list of states in which this button is shown

separator horizontal separator line for structuring views, with optional label
newline place-holder for completing the current line of the view
label free-text caption or legend in the form
group used to organise fields in groups with optional label (adds frame)
notebook,
page

notebook elements are tab containers for page elements. Attributes:
• name: label for the tab/page
• position: tabs position in notebook (inside, top, bottom, left, right)

Dynamic views
In addition to what can be done with states and attrs attributes, functions
may be called by view elements (via buttons of type object, or on_change
triggers on fields) to obtain dynamic behavior. These functions may alter
the view interface by returning a Python map with the following entries:
value a dictionary of field names and their new values

domain a dictionary of field names and their updated domains of value

warning a dictionary with a title and message to show a warning dialog

Lists and Hierarchical Tree Lists
Lists include field elements, are created with type tree, and have a <tree>
parent element. They are used to define both flat lists and hierarchical
lists.
Attributes • colors: list of colors mapped to Python conditions

• editable: top or bottom to allow in-place edit
• toolbar: set to True to display the top level of object
hierarchies as a side toolbar (example: the menu)

Allowed elements field, group, separator, tree, button, filter, newline
<tree string="Idea Categories" toolbar="1" colors="blue:state==draft">
 <field name="name"/>
 <field name="state"/>
</tree>

Copyright © 2013 Open Object Press - All rights reserved – See license on page 10. p.6/10

156
157
158

159
160
161
162

http://doc.openerp.com/trunk/developers/server/form-view-guidelines/

Kanban Boards
As of OpenERP 6.1 a new type versatile board view, in which each record
is rendered as a small “kanban card”. It supports drag&drop to manage
the lifecycle of the kanban cards based on configurable dimensions.
Kanban views are introduced in the OpenERP 6.1 release notes and
defined using the QWeb templating language, documented in the
technical documentation: see http://bit.ly/18usDXt and
http://doc.openerp.com/trunk/developers/web/qweb

Calendars
Views used to display date fields as calendar events (<calendar> parent)
Attributes • color: name of field for color segmentation

• date_start: name of field containing event start date/time
• day_length: length of a [working] day in hours (default: 8)
• date_stop: name of field containing event stop date/time
 or
• date_delay: name of field containing event duration

Allowed elements field (to define the label for each calendar event)
<calendar string="Ideas" date_start="invent_date" color="inventor_id">
 <field name="name"/>
</calendar>

Gantt Charts
Bar chart typically used to show project schedule (<gantt> parent element)
Attributes same as <calendar>

Allowed elements field, level
• level elements are used to define the Gantt chart levels, with
the enclosed field used as label for that drill-down level

<gantt string="Ideas" date_start="invent_date" color="inventor_id">
 <level object="idea.idea" link="id" domain="[]">
 <field name="inventor_id"/>
 </level>
</gantt>

Charts (Graphs)
Views used to display statistics charts (<graph> parent element)
Tip: charts are most useful with custom views extracting ready-to-use statistics
Attributes • type: type of chart: bar, pie (default)

• orientation: horizontal, vertical

Allowed elements field, with specific behavior:
• first field in view is X axis, 2nd one is Y, 3rd one is Z
• 2 fields required, 3rd one is optional
• group attribute defines the GROUP BY field (set to 1)
• operator attribute sets the aggregation operator to use for
other fields when one field is grouped (+,*,**,min,max)

<graph string="Total idea score by Inventor" type="bar">
 <field name="inventor_id" />
 <field name="score" operator="+"/>
</graph>

Search views
Search views customize the search panel on top of other views.
Allowed elements field, group, separator, label, search, filter, newline,

properties
• filter elements allow defining button for domain filters
• adding a context attribute to fields makes widgets that alter
the search context (useful for context-sensitive fields, e.g.
pricelist-dependent prices)

<search string="Search Ideas">
 <group col="6" colspan="4">
 <filter string="My Ideas"
 domain="[('inventor_id','=',uid)]"
 help="My own ideas"/>
 <field name="name"/>
 <field name="description"/>
 <field name="inventor_id"/>
 <!-- following context field is for illustration only -->
 <field name="inventor_country_id" widget="selection"
 context="{'inventor_country': self}"/>
 </group>
</search>

View Inheritance
Existing views should be modifying through inherited views, never
directly. An inherited view references its parent view using the inherit_id
field, and may add or modify existing elements in the view by referencing
them through XPath expressions, and specifying the appropriate position.
Tip: XPath reference can be found at www.w3.org/TR/xpath
position • inside: put inside match (default)

• replace: replace match
• before: put before match
• after: put after match

<!-- improved idea categories list -->
<record id="idea_category_list2" model="ir.ui.view">
 <field name="name">id.category.list2</field>
 <field name="model">ir.ui.view</field>
 <field name="inherit_id" ref="id_category_list"/>
 <field name="arch" type="xml">
 <xpath expr="/tree/field[@name='description']" position="after">
 <field name="idea_ids" string="Number of ideas"/>
 </xpath>
 </field>
</record>

Reports
There are several report engines in OpenERP, to produce reports from
different sources and in many formats.

Special expressions used inside report templates produce dynamic data
and/or modify the report structure at rendering time.
Custom report parsers may be written to support additional expressions.

Alternative Report Formats (see doc.openerp.com)

sxw2rml OpenOffice 1.0 templates (.sxw) converted to RML with
sxw2rml tool, and the RML rendered in HTML or PDF

rml RML templates rendered directly as HTML or PDF
xml,xsl:rml XML data + XSL:RML stylesheets to generate RML
odt2odt OpenOffice templates (.odt) used to produce directly

OpenOffice documents (.odt)

Expressions used in OpenERP report templates
[[<content>]] double brackets content is evaluated as a Python

expression based on the following expressions

Predefined expressions:

• objects contains the list of records to print
• data comes from the wizard launching the report
• user contains the current user (browse_record, as returned browse())
• time gives access to Python time module
• repeatIn(list,'var','tag') repeats the current parent element named tag for
each object in list, making the object available as var during each loop
• setTag('tag1','tag2') replaces the parent RML tag1 with tag2

• removeParentNode('tag') removes parent RML element tag

• formatLang(value, digits=2, date=False, date_time=False, grouping=True,
monetary=False) can be used to format a date, time or amount according
to the locale
• setLang('lang_code') sets the current language and locale for translations

Report declaration
<!-- The following creates records in ir.actions.report.xml model -->
<report id="idea_report" string="Print Ideas" model="idea.idea"
 name="idea.report" rml="idea/report/idea.rml" >
<!-- Use addons/base_report_designer/wizard/tiny_sxw2rml/tiny_sxw2rml.py
 to generate the RML template file from a .sxw template -->

id unique report identifier
name name for the report (required)

Copyright © 2013 Open Object Press - All rights reserved – See license on page 10. p.7/10

163
164
165

166
167
168
169
170

171
172
173
174

175
176
177
178
179
180
181
182
183
184
185
186
187

188
189
190
191
192
193
194
195
196
197
198

199
200
201
202
203

http://doc.openerp.com/
http://www.w3.org/TR/xpath
http://doc.openerp.com/trunk/developers/web/qweb/
http://bit.ly/18usDXt

string report title (required)
model object model on which the report is defined (required)
rml, sxw, xml, xsl path to report template sources (starting from addons), depending on report
auto set to False to use a custom parser, by subclassing report_sxw.rml_parse and

declaring the report as follows:
report_sxw.report_sxw(report_name, object_model,rml_path,parser=customClass)

header set to False to suppress report header (default: True)
groups comma-separated list of groups allowed to view this report
menu set to True to display this report in the Print menu (default: True)
keywords specify report type keyword (default: client_print_multi)

Tip: RML User Guide: www.reportlab.com/docs/rml2pdf-userguide.pdf
Example RML report extract:
<story>
 <blockTable style="Table">
 <tr>
 <td><para style="Title">Idea name</para> </td>
 <td><para style="Title">Score</para> </td>
 </tr>
 <tr>
 <td><para>[[repeatIn(objects,'o','tr')]] [[o.name]]</para></td>
 <td><para>[[o.score]]</para></td>
 </tr>
 </blockTable>
</story>

Workflows
Workflows may be associated with any
object in OpenERP, and are entirely
customizable.
Workflows are used to structure and manage
the life-cycles of business objects and
documents, and define transitions, triggers,
etc. with graphical tools.
Workflows, activities (nodes or actions) and
transitions (conditions) are declared as XML
records, as usual. The tokens that navigate
in workflows are called workitems.

Workflow declaration
Workflows are declared on objects that
possess a state field (see the example idea class in the ORM section)
<record id="wkf_idea" model="workflow">
 <field name="name">idea.basic</field>
 <field name="osv">idea.idea</field>
 <field name="on_create" eval="1"/>
</record>

id unique workflow record identifier
name name for the workflow (required)
osv object model on which the workflow is defined (required)
on_create if True, a workitem is instantiated automatically for each new osv record

Workflow Activities (nodes)
<record id="act_confirmed" model="workflow.activity">
 <field name="name">confirmed</field>
 <field name="wkf_id" ref="wkf_idea"/>
 <field name="kind">function</field>
 <field name="action">action_confirmed()</field>
</record>

id unique activity identifier
wkf_id parent workflow identifier
name activity node label
flow_start True to make it a 'begin' node, receiving a workitem for each workflow instance
flow_stop True to make it an 'end' node, terminating the workflow when all items reach it
join_mode logical behavior of this node regarding incoming transitions:

• XOR: activate on the first incoming transition (default)

• AND: waits for all incoming transitions to become valid
split_mode logical behavior of this node regarding outgoing transitions:

• XOR: one valid transition necessary, send workitem on it (default)

• OR: send workitems on all valid transitions (0 or more), sequentially

• AND: send a workitem on all valid transitions at once (fork)
kind type of action to perform when node is activated by a transition:

• dummy to perform no operation when activated (default)

• function to invoke a function determined by action

• subflow to execute the subflow with subflow_id, invoking action to determine
the record id of the record for which the subflow should be instantiated. If action
returns no result, the workitem is deleted.

• stopall to terminate the workflow upon activation
subflow_id if kind subflow, id of the subflow to execute (use ref attribute or search with a tuple)
action object method call, used if kind is function or subflow. This function should also

update the state field of the object, e.g. for a function kind:
def action_confirmed(self, cr, uid, ids):
 self.write(cr, uid, ids, { 'state' : 'confirmed' })
 # … perform other tasks
 return True

Workflow Transitions (edges)
Conditions are evaluated in this order: role_id, signal, condition expression
<record id="trans_idea_draft_confirmed" model="workflow.transition">
 <field name="act_from" ref="act_draft"/>
 <field name="act_to" ref="act_confirmed"/>
 <field name="signal">button_confirm</field>
 <field name="role_id" ref="idea_manager"/>
 <field name="condition">1 == 1</field>
</record>

act_from, act_to identifiers of the source and destination activities
signal name of a button of type workflow that triggers this transition

Copyright © 2013 Open Object Press - All rights reserved – See license on page 10. p.8/10

204
205
206
207
208
209
210
211
212
213
214
215

216
217
218
219
220

221
222
223
224
225
226

227
228
229
230
231
232
233

http://www.reportlab.com/docs/rml2pdf-userguide.pdf

role_id reference to the role that user must have to trigger the transition (see Roles)
condition Python expression that must evaluate to True for transition to be triggered

Tip: OpenERP features a graphical workflow editor, available by switching to the Diagram view while viewing a
workflow in the Settings>Technical>Workflows

Security
Access control mechanisms must be combined to achieve a coherent
security policy.

Group-based access control mechanisms
Groups are created as normal records on the res.groups model, and granted
menu access via menu definitions. However even without a menu, objects
may still be accessible indirectly, so actual object-level permissions
(create,read,write,unlink) must be defined for groups. They are usually
inserted via CSV files inside modules. It is also possible to restrict access
to specific fields on a view or object using the field's groups attribute.

ir.model.access.csv
"id","name","model_id:id","group_id:id","perm_read","perm_write","perm_create","perm_unlink"
"access_idea_idea","idea.idea","model_idea_idea","base.group_user",1,1,1,0
"access_idea_vote","idea.vote","model_idea_vote","base.group_user",1,1,1,0

Roles
Roles are created as normal records on the res.roles model and used only
to condition workflow transitions through transitions' role_id attribute.

Wizards
Wizards describe stateful interactive sessions with the user through
dynamic forms. They are constructed based on the osv.TransientModel
class and automatically garbage-collected after use. They're defined using
the same API and views as regular osv.Model objects.

Wizard models (TransientModel)
from osv import fields,osv
import datetime
class cleanup_wizardcleanup_wizard(osv.TransientModel):
 _name = 'idea.cleanup.wizard'
 _columns = {
 'idea_age': fields.integer('Age (in days)'),
 }
 def cleanup(self,cr,uid,ids,context=None):
 idea_obj = self.pool.get('idea.idea')
 for wiz in self.browse(cr,uid,ids):
 if wiz.idea_age <= 3:
 raise osv.except_osv('UserError','Please select a larger age')
 limit = datetime.date.today()-datetime.timedelta(days=wiz.idea_age)
 ids_to_del = idea_obj.search(cr,uid, [('create_date', '<' ,
 limit.strftime('%Y-%m-%d 00:00:00'))],context=context)
 idea_obj.unlink(cr,uid,ids_to_del)
 return {}

Wizard views
Wizards use regular views and their buttons may use a special cancel
attribute to close the wizard window when clicked.
<record id="wizard_idea_cleanup" model="ir.ui.view">
 <field name="name">idea.cleanup.wizard.form</field>
 <field name="model">idea.cleanup.wizard</field>
 <field name="type">form</field>
 <field name="arch" type="xml">
 <form string="Idea Cleanup Wizard">
 <label colspan="4" string="Select the age of ideas to cleanup"/>
 <field name="idea_age" string="Age (days)"/>
 <group colspan="4">
 <button string="Cancel" special="cancel"/>
 <button string="Cleanup" name="cleanup" type="object"/>
 </group>
 </form>
 </field>
</record>

Wizard execution
Such wizards are launched via regular action records, with a special target
field used to open the wizard view in a new window.
<record id="action_idea_cleanup_wizard" model="ir.actions.act_window">
 <field name="name">Cleanup</field>
 <field name="type">ir.actions.act_window</field>
 <field name="res_model">idea.cleanup.wizard</field>

 <field name="view_type">form</field>
 <field name="view_mode">form</field>
 <field name="target">new</field>
</record>

WebServices – XML-RPC
OpenERP is accessible through XML-RPC interfaces, for which libraries
exist in many languages.
Python example
import xmlrpclib
... define HOST, PORT, DB, USER, PASS
url = 'http://%s:%d/xmlrpc/common' % (HOST,PORT)
sock = xmlrpclib.ServerProxy(url)
uid = sock.login(DB,USER,PASS)
print "Logged in as %s (uid:%d)" % (USER,uid)

Create a new idea
url = 'http://%s:%d/xmlrpc/object' % (HOST,PORT)
sock = xmlrpclib.ServerProxy(url)
args = {
 'name' : 'Another idea',
 'description' : 'This is another idea of mine',
 'inventor_id': uid,
}
idea_id = sock.execute(DB,uid,PASS,'idea.idea','create',args)

PHP example
<?
include('xmlrpc.inc'); // Use phpxmlrpc library, available on sourceforge
// ... define $HOST, $PORT, $DB, $USER, $PASS
$client = new xmlrpc_client("http://$HOST:$PORT/xmlrpc/common");
$msg = new xmlrpcmsg("login");
$msg->addParam(new xmlrpcval($DB, "string"));
$msg->addParam(new xmlrpcval($USER, "string"));
$msg->addParam(new xmlrpcval($PASS, "string"));
resp = $client->send($msg);
uid = $resp->value()->scalarval()
echo "Logged in as $USER (uid:$uid)"

// Create a new idea
$arrayVal = array(
 'name'=>new xmlrpcval("Another Idea", "string") ,
 'description'=>new xmlrpcval("This is another idea of mine" , "string"),
 'inventor_id'=>new xmlrpcval($uid, "int"),
);
$msg = new xmlrpcmsg('execute');
$msg->addParam(new xmlrpcval($DB, "string"));
$msg->addParam(new xmlrpcval($uid, "int"));
$msg->addParam(new xmlrpcval($PASS, "string"));
$msg->addParam(new xmlrpcval("idea.idea", "string"));
$msg->addParam(new xmlrpcval("create", "string"));
$msg->addParam(new xmlrpcval($arrayVal, "struct"));
$resp = $client->send($msg);
?>

Internationalization
Each module can provide its own translations within the i18n directory, by
having files named LANG.po where LANG is the locale code for the
language, or the language and country combination when they differ (e.g.
pt.po or pt_BR.po). Translations will be loaded automatically by OpenERP for
all enabled languages.
Developers always use English when creating a module, then export the
module terms using OpenERP's gettext POT export feature
(Settings>Translations>Import/Export>Export Translation and choose “New
Languag” to create the module template POT file, then derive the
translated PO files from it.
Many IDEs have plugins or modes for editing and merging PO/POT files.

Tip: The GNU gettext format (Portable Object) used by OpenERP is integrated into Launchpad, making it
an online collaborative translation platform.

|- idea/ # The module directory
 |- i18n/ # Translation files
 | - idea.potidea.pot # Translation Template (exported from OpenERP)
 | - fr.po # French translation
 | - pt_BR.po # Brazilian Portuguese translation
 | (...)

Tip: By default OpenERP's POT export only extracts labels inside XML files or inside field definitions in Python
code, but any Python string can be translated this way by surrounding it with the tools.translate._
method (e.g. _('Label'))

Copyright © 2013 Open Object Press - All rights reserved – See license on page 10. p.9/10

234
235
236

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

269
270
271
272

273
274
275
276

277
278
279
280
281
282

283284
285
286
287
288
289
290
291
292

293
294
295
296
297
298
299
300
301
302
303

304305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

320
321
322
323
324
325

Performance Optimization
As Enterprise Management Software typically has to deal with large
amounts of records, you may want to pay attention to the following anti-
patterns, to obtain consistent performance:

• Do not place browse() calls inside loops, put them before and access
only the browsed objects inside the loop. The ORM will optimize the
number of database queries based on the browsed attributes.
• Avoid recursion on object hierarchies (objects with a parent_id
relationship), by adding parent_left and parent_right integer fields on your
object, and setting _parent_store to True in your object class. The ORM will
use a modified preorder tree traversal to be able to perform recursive
operations (e.g. child_of) with database queries in O(1) instead of O(n)
• Do not use function fields lightly, especially if you include them in
tree views. To optimize function fields, two mechanisms are available:

◦ multi: all fields sharing the same multi attribute value will be
computed with one single call to the function, which should then
return a dictionary of values in its values map
◦ store: function fields with a store attribute will be stored in the
database, and recomputed on demand when the relevant trigger
objects are modified. The format for the trigger specification is as
follows: store = {'model': (_ref_fnct, fields, priority)} (see example below)

def _get_idea_from_vote(self,cr,uid,ids,context=None):
 res = {}
 vote_ids = self.pool.get('idea.vote').browse(cr,uid,ids,context=context)
 for v in vote_ids:
 res[v.idea_id.id] = True # Store the idea identifiers in a set
 return res.keys()
def _compute(self,cr,uid,ids,field_name,arg,context=None):
 res = {}
 for idea in self.browse(cr,uid,ids,context=context):
 vote_num = len(idea.vote_ids)
 vote_sum = sum([v.vote for v in idea.vote_ids])
 res[idea.id] = {
 'vote_sum': vote_sum,
 'vote_avg': (vote_sum/vote_num) if vote_num else 0.0,
 }
 return res
_columns = {
 # These fields are recomputed whenever one of the votes changes
 'vote_avg': fields.function(_compute, string='Votes Average',
 store = {'idea.vote': (_get_idea_from_vote,['vote'],10)},multi='votes'),
 'vote_sum': fields.function(_compute, string='Votes Sum',
 store = {'idea.vote': (_get_idea_from_vote,['vote'],10)},multi='votes'),
}

Community / Contributing
OpenERP projects are hosted on Launchpad(LP), where all project resources
may be found: Bazaar branches, bug tracking, blueprints, roadmap, FAQs, etc.
Create a free account on launchpad.net to be able to contribute.

Launchpad groups
Group* Members Bazaar/LP restrictions

OpenERP Quality
Team (~openerp)

OpenERP Core Team Can merge and commit on
official branches.

OpenERP Drivers
(~openerp-drivers)

Selected active
community members

Can confirm bugs and set
milestones on bugs

OpenERP Community
(~openerp-community)

Open group, anyone
can join

Can create community branches
where everyone can contribute

*Members of upper groups are also members of lower groups

License
Copyright © 2010-2013 Open Object Press. All rights reserved.

You may take electronic copy of this work and distribute it if you don't change
the content. You can also print a copy to be read by yourself only.

We have contracts with different publishers in different countries to sell and
distribute paper or electronic based versions of this work (translated or not)
in bookstores. This helps to distribute and promote the Open ERP product. It
also helps us to create incentives to pay contributors and authors with the
royalties.

Due to this, grants to translate, modify or sell this work are strictly forbidden,
unless OpenERP s.a. (representing Open Object Press) gives you a written
authorization for this.

While every precaution has been taken in the preparation of this work, the
publisher and the authors assume no responsibility for errors or omissions, or
for damages resulting from the use of the information contained herein.

Published by Open Object Press, Grand Rosière, Belgium

Copyright © 2013 Open Object Press - All rights reserved – See license on page 10. p.10/10

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

http://launchpad.net/

	Open Source RAD with OpenERP 7.0
	Tip: Useful links

	Installing OpenERP
	Tip: Installation procedure
	Compilation tip: OpenERP being Python-based, no compilation step is needed

	Building an OpenERP module: idea
	Note: Modular development

	Building the module interface
	Tip: XML RelaxNG validation

	Views and inheritance
	Form Elements
	Reports
	Tip: RML User Guide: www.reportlab.com/docs/rml2pdf-userguide.pdf

	Workflows
	Security
	Wizards
	WebServices – XML-RPC
	Internationalization
	Performance Optimization
	Community / Contributing
	
	License

